[1]F.Y.Zhang,Y.Luo*,et al, Mechanical properties improvement of nickel-based alloy 625 fabricated by powder-fed laser additive manufacturing based on linear beam oscillation,Materials Science & Engineering A, 2022,842: 143054.
[2] Y.H.Cai,Y.Luo*,et al,Study of the microstructure and mechanical properties in multilayered structures created by Laser-PTA additive manufacturing,Materials Science & Engineering A, 2022,830: 142299.
[3] Y.H.Cai,Y.Luo*,et al,Physical mechanism of laser‑excited acoustic wave and its application in recognition of incomplete‑penetration welding defect,The International Journal of Advanced Manufacturing Technology, 2022, 120:6091–6105.
[4] Y.H.Cai,Y.Luo*,et al,Effect of laser energy excitation position on the microstructure in laser-arc hybrid heat source processing,Welding in the World, 2022, 66:879–894.
[5] F.S. Tang,Y.Luo*,et al,Arc length identification based on arc acoustic signals in GTA-WAAM process,The International Journal of Advanced Manufacturing Technology, 2022, 118:1553–1563.
[6] Y.H.Cai,F.S. Tang,Y.Luo*,et al,Recognition of laser defocusing distance based on the plasma charge voltage signal,Measurement, 2021, 171:108861.
[7]Analysis on the microstructure regulation based on the pulsed laser oscillating molten pool in Laser-PTA additive manufacturing,Journal of Manufacturing Processes, 2020, 59:587–594.
[8] D. Chen, Y.H. Cai,Y.Luo*,et al,Measurement and analysis on the thermal and mechanical transfer characteristics of GTA arc affected by arc length,Measurement, 2020, 153:107431.
[9]Y.Luo*,et al,Study on the acoustic emission effect of plasma plume in pulsed laser welding,Mechanical Systems and Signal Processing, 2019, 124:715–723.
[10]Y.Luo*,et al,Effect of focusing condition on laser energy absorption characteristics in pulsed laser welding,Optics and Laser Technology, 2019, 117: 52-63.
[11] J. Xu,Y.Luo*,et al,Effect of shielding gas on the plasma plume in pulsed laser welding,Measurement, 2019, 134: 25-32.
[12] L. Zhu,Y.Luo*,et al,Energy characteristics of droplet transfer in wire-arc additive manufacturing based on the analysis of arc signals,Measurement, 2019, 134:804–813.
[13]罗怡*,等,电弧填丝增材制造过程熔滴射滴过渡特征及其对熔滴沉积成形的影响,机械工程学报, 2019, 55(3): 219-225.
[14]Y.Luo*,et al,Influence of pulsed arc on the metal droplet deposited by projected transfer mode in wire-arc additive manufacturing,Journal of Materials Processing Technology, 2018, 259: 353-360.
[15] L. Zhu, J.L. Li,Y.Luo*,et al,Characteristics of metal droplet transfer in wire-arc additive manufacturing of aluminum alloy,The International Journal of Advanced Manufacturing Technology, 2018, 99:1521–1530.
[16]万瑞,罗怡*,等, TiO2粉末介质介入铝合金电阻点焊熔核形核电阻特征分析,焊接学报, 2018, 39(3): 71-74.
3.专利
[1]罗怡,等.一种激光激励超声能场辅助等离子弧填粉焊接方法, 2021,中国发明专利,ZL201910142431.4
[2]一种基于激光高频振荡熔池的电弧熔丝增材制造方法, 2021,中国发明专利,ZL201910142432.9
[3]一种激光激励超声能场辅助等离子弧载粉增材制造方法, 2021,中国发明专利, ZL201910142420.6
[4]一种基于激光高频振荡熔池的电弧焊接方法, 2021,中国发明专利,ZL201910141876.0
[5]一种基于激光超声的双光束激光焊接方法, 2020,中国发明专利, ZL201910141915.7
[6]罗怡,等.一种基于激光超声的双光束激光快速成形制造方法, 2020,中国发明专利, ZL201910141875.6
[7]一种基于电弧声波信号检测与评估电弧三维快速成形制造过程稳定性的方法, 2019,中国发明专利, ZL201710095569.4
[8]一种应用于电弧三维快速成形制造的熔滴沉积率检测方法, 2019,中国发明专利,ZL201710095588.7
[9]罗怡,等.一种利用电弧电压信号监测电弧弧长的方法, 2018,中国发明专利, ZL201710095584.9.
[10]罗怡,等.一种电阻点焊电极损耗的在线检测方法, 2018,中国发明专利,ZL201510091240.1
[11]罗怡,等.一种基于电弧声波信号传感监测电弧弧长的方法, 2018,中国发明专利,ZL201710095561.8
[12]罗怡,等.一种基于微弧载粉的激光三维快速成形制造方法, 2017,中国发明专利,ZL201610369621.6
[13]罗怡,等.一种基于脉冲电流强制熔滴过渡的电弧三维快速成形制造方法, 2017,中国发明专利,ZL201610368862.9
[14]罗怡,等.一种基于协同脉冲激光能量诱导的脉冲电弧三维快速成形制造方法, 2017,中国发明专利,ZL201610366369.3
[15]罗怡,等.一种利用电阻点焊过程声发射信号能量当量定量检测焊接喷溅的方法, 2016,中国发明专利, 201310481270.4
[16]罗怡,等.一种利用电阻点焊过程声发射信号能量当量定量检测熔核裂纹的方法, 2015,中国发明专利,ZL201310482773.3
[17]罗怡,等.一种合金粉末填充焊接用同轴送粉自动氩弧焊枪, 2014,中国发明专利, ZL201110376897.4
[18]罗怡,等.电阻点焊熔核形核质量动态检测方法, 2014,中国发明专利, ZL201210066680.8
[19]罗怡,等.一种合金粉末填充钨极氩弧焊接用旁轴送粉自动焊枪, 2013,中国发明专利, ZL201110376894.0
专著
[1]罗怡,丁雪萍,电弧焊原理及方法,机械工业出版社,2022年
科技奖励
[1]罗怡,等,金属材料特种焊接过程传输现象与界面特征研究,重庆市自然科学三等奖,2012年